skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tape, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY We introduce MTUQ, an open-source Python package for seismic source estimation and uncertainty quantification, emphasizing flexibility and operational scalability. MTUQ provides MPI-parallelized grid search and global optimization capabilities, compatibility with 1-D and 3-D Green’s function database formats, customizable data processing, C-accelerated waveform and first-motion polarity misfit functions, and utilities for plotting seismic waveforms and visualizing misfit and likelihood surfaces. Applicability to a range of full- and constrained-moment tensor, point force, and centroid inversion problems is possible via a documented application programming interface, accompanied by example scripts and integration tests. We demonstrate the software using three different types of seismic events: (1) a 2009 intraslab earthquake near Anchorage, Alaska; (2) an episode of the 2021 Barry Arm landslide in Alaska; and (3) the 2017 Democratic People’s Republic of Korea underground nuclear test. With these events, we illustrate the well-known complementary character of body waves, surface waves, and polarities for constraining source parameters. We also convey the distinct misfit patterns that arise from each individual data type, the importance of uncertainty quantification for detecting multimodal or otherwise poorly constrained solutions, and the software’s flexible, modular design. 
    more » « less
  2. Abstract Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion. 
    more » « less